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Cyclic stressing of fibre composites in the elastic-plastic region is discussed under 
the assumption of equal strains in the fibre and the matrix. Under conditions of 
alternating load, it is found that the strain decreases and the stress on the matrix 
increases with increasing number of cycles. Such a phenomenon appears to be a 
macroscopic version of the Orowan model of fatigue. 

Within certain stress-levels, it appears that the matrix may work-harden to its 
failure stress and the composite will fail by this mechanism. Equations are developed 
which relate the number of cycles to matrix failure to the composite stress. A 
characteristic of the equation is the existence of a matrix "endurance limit", a stress 
below which the matrix will not fall by progressive work-hardening, but rather by 
conventional fatigue mechanisms. 

The analysis is applied to Ag-steel and Cu-W composites. It shows that, for stresses 
in excess of the "endurance limit", the number of cycles to induce failure is rather 
limited. At high volume-fraction of fibres in these systems, the "endurance limit" 
is only a small fraction of the composite tensile strength. 

1. In t roduct ion 
The desire to utilise the strength of materials 
which, because of their brittleness or small size, 
cannot be used in bulk form has led in recent 
years to extensive work in the development and 
study of fibre composite materials. Such systems 
consist of a strong material in the form of fibre 
(whisker, wire, filament, or flake) embedded in a 
relatively soft matrix. In such a composite, 
optimum mechanical properties are obtained 
when the fibres are all aligned in the direction 
of the applied stress [1]. The micromechanics of 
such a composite are quite complicated [2-4]. 
However, to a first approximation, the stress- 
strain curve of a fibre composite* can be syn- 
thesised from the stress-strain curves of the 
components. This is accomplished by using the 
volume-fraction rule [5], where the stress on the 
composite, ~re, at a given value of strain, ~, is 
obtained by a linear averaging of the stresses of 
the individual components (taken from their 
respective stress-strain curves) at the strain E. 

It follows that 
at(e) = Vf~f(~) + Vr~m(~) (I) 

The subscripts, c, f, and m, stand for composite, 
fibre, and matrix, respectively, and V is the 
volume fraction. This relation holds quite well 
for continuous fibres and requires a slight modi- 
fication [1] for discontinuous fibres. The major 
assumptions of the volume-fraction rule are 
equal strains in both the fibre and the matrix, 
and non-interacting stress fields between the 
individual components. 

According to the volume-fraction rule, de- 
formation of a fibre composite can be divided, in 
general, into four successive stages [5]. 

Stage 1 -  Elastic deformation of both fibre 
and matrix. 

Stage 2 - Elastic deformation of fibre; plastic 
deformation of matrix. 

Stage 3 -  Plastic deformation of both fibre 
and matrix. 

Stage 4 - Failure. 
The presence or absence of an individual stage 

*Referring now, and for the rest of this paper, to the case when the fibres are aligned in the direction of the applied 
stress. 
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depends on the properties of the individual com- 
ponents. Of the four stages of deformation, the 
effective use of a fibre composite material 
depends on its properties during the second stage. 
In other words, when the matrix reaches its 
elastic limit, the stress on the composite will 
usually be much lower than the desired service 
strength of the composite. Since stage 2 more 
often represents the region of desired service 
strength, composites will most likely be designed 
for applications in this stress region. 

As with most structural materials, potential 
applications of composites often involve some 
fluctuations in load during the life of a com- 
posite. This aspect of their behaviour has, never- 
theless, received relatively little attention. 
Williams and O'Brien [6] and Forsyth et al [7] 
have studied fatigue properties of steel fibre- 
reinforced A1 and obtained positive results. 
One of the more extensive studies was per- 
formed on silica-reinforced A1 by Baker and 
Cratchley [8]. They have pointed out that the 
behaviour of fibre-reinforced materials under 
cyclic loading is considerably more complex 
than ordinary fatigue behaviour. In the present 
paper, some of the problem areas to be expected 
during a fluctuating load on a composite, corre- 
sponding to loads of stage 2 deformation, are 
considered. Moreover, a potentially serious limi- 
tation to the behaviour of a fibre composite 
under an alternating load needs to be emphasised. 
This limitation may be called "matrix-limited 
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Figure 1 Mechanica l  model co r responamg to the Orowan 
theory of fat igue. 
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fatigue failure". It is, nevertheless, necessary to 
point out that any failure which takes place 
during cyclic loading of a composite may not be 
a fatigue failure in the usual sense, albeit some 
ordinary fatigue damage may be occurring simul- 
taneously. In this regard, it is necessary to point 
out that we are only concerned in this present 
paper with one aspect of the behaviour of com- 
posite materials during cyclic loading, namely 
the work-hardening of the matrix during suc- 
cessive cycles. The constraint of equal deforma- 
tion in the fibre and the matrix leads naturally 
to a successively higher load on the matrix. 
This is why the geometrical model of fatigue, 
first used by Orowan [9] and shown in fig. 1, 
appears applicable to composites. That it may 
not be in accord with the results of fatigue 
studies on ordinary engineering materials need 
not concern us in the special case described 
below. 

2. Cyclic Deformation 
In order to show how cyclic loading in stage 2 
of a fibrous composite material can lead to 
failure of the softer matrix, consider the be- 
haviour of the material during a half-cycle of 
stress. Let the i-�89 cycle correspond to negative 
stress and the i th cycle to positive stress. Also, 
let the stress on the composite at the end of 
stage 1 deformation be denoted as tree 

VfEfEe fi- VmEmEe where the E's refer to respec- 
tive elastic moduli and Ee to the elastic limit of 
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Figure 2 Relat ion between compos i te  st ress and cycles to 
matr ix fa i lure (equat ion 11) for  Ag-s tee l  f ib re  composi tes.  
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strain in the matrix. If  we neglect the Bau- 
schinger effect [10], the magnitude of (ree in 
tension will be the same as in compression. 
Hence, rewriting equation 1 in magnitude form 
gives, for the i -1 cycle, 

(re_ - ace = V~Efep(i- �89 + Vm(rm(i -1) (2) 

and for the i th cycle 

O'e+ - -  O'ce = V f E f e g ( i )  -~  Vmcrm(i) (3 )  

where ae_ is the magnitude of the stress on the 
composite in compression and (re+ is the corre- 
sponding quantity in tension, ep is the plastic 
strain (total strain - e e )  in the matrix at the 
stated half-cycle, and (rm is the stress in the 
matrix in excess of the yield stress at the same 
half-cycle. Adding equations 2 and 3 gives 

o-e+ + (re_ - 2ace = V t E f { e v ( i )  + co(i-�89 + 
Vm{am(i) + o-re(i-�89 (4) 

For  small changes in o-m, we have for the change 
in magnitude of (rm due to work-hardening of 
the matrix, 

o-re(i) -- o-re(i-�89 = o-*{ep(i) -~ co(i-k)} (5) 

where (r* = d(r/de, the strain-hardening charac- 
teristic of the matrix. By combining equations 
4 and 5, the increase in stress on the matrix in a 
half-cycle becomes 

A(rm(half-cycle) = o-m(i) -- o-m(i-�89 = 

V f E f  + Vma*  2 ace 
Vm - o-re(i-�89 (6) 

Using the definition of average stress, 

Act 
(ravg = (rm(i-�89 -}- "~" (7) 

and rearranging (6) gives 

Aam(half-cycle) = A ( B  - aavg) (8) 

where 

(re+- -}- o-c- 
A -~ 2(r*~I'm and B = 2 ace 

VfEf 
V~ 

If  the stress change over the half-cycle is small, 
the above equation can be transformed into a 
differential equation relating the change in stress, 
de, to the number of half-cycles, dk, so that 

do- 
- dk (9) 

A ( B  - o-) 

The number of cycles necessary for matrix 
failure, n, may be obtained by integrating dk 
from 0 to 2n (counting the initial loading as a 
quarter of a cycle) and the left-hand side of 
equation 9 between o- = 0 and (r = o - f -  (ry, 
where (rf = failure stress and o-y = yield stress 
of the matrix. 

Although it is not obvious from the above 
derivation, the same form of equation is obtained 
when the composite is cycled between two 
positive loads in stage 2 deformation, except 
that B is replaced by B' where 

O-e_ k - -  O ' e _  

B' = 2 (recto (10) 

V~ 

with o-eem = E m g m e e  and (~e+ - (re- is the range 
of stress. 

Two solutions to equation 9 are given below. 

2.1. Solution for Cons tan t  Strain-Hardening 
Under the condition of constant o-*, the relation 
between the number of full cycles to matrix 
failure, n, and the composite stress is given by 

n = ~ l n  B - ( ( r r - c r y )  (11) 

2.2. Solution for o-m = K% ~ 
Equation 11, since it assumes linear work- 
hardening and hence, in general, over-estimates 
the additional stress per cycle, will under-value 
the cycles to failure. Using the better approxima- 
tion for plastic deformation, o-m = Kep ~, (9) 
reduces to 

V~E~(r (1 - ~) d(r 
= dk  (12)  

2 VmoLKa/~'(B - o-) 

when ~ = �89 (12) integrates to 

n - -  2 V m K  ~ B l n  B _  ( a f -  o -y ) -  
1 

((rf - (ry)~ 03)  

It  is necessary to point out that the Bauschinger 
effect will probably lead to a larger value of n, 
since the yield stress in compression will be less 
than in tension (if the initial loading is tension). 
To a first approximation, however, the increased 
initial work-hardening following the initially 
lower yield [10] will tend to cancel out this effect. 
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T A B  k E I Data used in composi te stress-cycles-to-matr ix-fai lure relationship (106 Ib]in. 2 =  700 kg/mm~). 

S y s t e m  E f  ( 1 0 '  E m  ( 1 0 '  Ee (x  10  ~) oy  (10  3 (7 t (10  3 ~x K (10  a o* (10  5 

lb/in. 2) lb/in. ~) lb/in3) lb/in3) lb/in3) lb/in3) 

C u - W  50 18 3 3 45  - -  - -  1.0 

C u - W  50  18 3 3 45  0 .5  4 6  - -  

A g - s t e e l  30  11 3 4 35 - -  - -  1.5 

3. Applications 
The results of the previous section can be applied 
to some composites in which the volume-frac- 
tion rule has been shown to be a good approxi- 
mation [5, 11]. The materials considered are a 
Cu-W fibre composite and a Ag-steel fibre 
composite. The data used in calculating the 
composites' stress-cycles-to-matrix-failure rela- 
tionships are shown in table I. The values of 
(r* used appear to be reasonable averages for the 
average strain-hardening in these matrices [11, 
12], as are the values of ~ and K used for Cu [12]. 
The values of af used may be somewhat low. 
The elastic limit of strain used in the calculations 
is a good approximation for Cu [5], but is merely 
assumed for Ag. The modulus value used for W 
is the static modulus [5]. 

Using the values listed in table I, the calcu- 
lated (equation 11), composite stress cycles to 
matrix failure for Ag-steel are shown in fig. 2 for 
various volume fractions of steel fibres. The 
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maximum stress shown is the maximum com- 
posite stress at which the fibre still remains 
elastic. The results for Cu-W composites are 
shown in figs. 3a and b. The former is calculated 
from equation 11 and the latter from equation 
13. Fig. 3c compares the results calculated from 
equation 11 with those calculated from equation 
13 for two different volume-fractions. Equation 
13 predicts a longer life at a given value of stress, 
but the "endurance limit" remains unchanged. 
The "endurance limit", 2~, in both cases is given 
by 

~Y7 = O-ee Jr- ~m(O' f  - -  cry) ( 1 4 )  

According to equation 9, the stress increase 
per half-cycle must be small in order to transform 
the difference equation 6 to the differential 
equation 9. However, for large values of the 
composite stress, the stress increase per half- 
cycle is relatively large. In order to check this 
assumption, the number of cycles to failure was 
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F igu re  3 Relation between composi te  stress and cycles to matrix fai lure for Cu -W fibre composi tes:  (a) calculated 
f rom equation 11 ; (b) calculated f rom equation 13. 
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T A B L E  I I  Comparison of cycles-to-matr ix-fai lure, as calculated from equat ions 6 and 11 (10 a Ib/in.2 = 0.7 kg/mm2). 

G C +  -~ "  O ' C _  

System Vf ~ ( 10~ lb/in.~) n (equation 6) n (equation 11) 

Cu-W 0.90 180 28.5 28.8 
Cu-W 0.90 140 37.7 38.1 
Cu-W 0.90 100 55.8 56.3 
Cu-W 0.50 100 33.3 33.3 
Cu-W 0.50 80 44.8 44.7 
Cu-W 0.50 60 68.6 68.5 

calculated for several cases using the difference 
equation 6 and compared with those calculated 
from equation 9. The results are listed in table II. 
The error introduced by using the differential 
form of equation 6 is very small. 

4. Discussion 
The most unexpected result from the above is the 
surprisingly low number of cycles necessary for 
matrix failure at stresses well below the com- 
posite tensile strength. Another somewhat un- 
expected result is that the "endurance limit" of 
a fibre composite should increase as the volume 
fraction of the strengthening fibre decreases. 
Fig. 4 shows, for Cu-W and Ag-steel com- 
posites*, the relation between the volume frac- 
tion of the matrix and the ratio of the matrix- 
limited "endurance strength" to the composite 
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Figure 3c Comparison of equations 11 and 13 for the 
relation between composi te  stress and cycles to fai lure 
for  Cu -W composites, 

*Tensile strengths taken from references 5 and 8. 

tensile strength. For a high volume-fraction of 
fibre, the matrix-limited endurance strength is 
only a small fraction of the tensile strength. For 
composite stress cycles less than the endurance 
limit, the failure of composites under cyclic 
loading will probably be governed by the more 
usually encountered fatigue failure mechanisms. 
In fact, the observed stress-number of cycles-to- 
failure relationship will probably be an envelope 
of the curves of failure by work-hardening and 
failure by normal fatigue processes. 

If the above analysis is even approximately 
indicative of the behaviour of real composites 
(and it should be in cases where the assumption 
of equal strains is tenable), the use of fibre com- 
posites in fatigue applications may be limited. 
Although the failure of the matrix will not neces- 
sarily lead to immediate failure of the composite 
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Figure 4 Matrix- l imited endurance l imit to tensile strength 
ratio as a funct ion of volume-fract ion matrix (Cu-W fibre 
and Ag-steel  f ibre composites).  
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(which, of  course, depends on the volume 
fraction and tensile strength of the fibres), such 
matrix failure will have to be considered in 
design. 

There are several objections that can be made 
to the above treatment. In addition to the 
Bauschinger effect previously mentioned, there 
is the effect of  the difference in Poisson ratio 
between the matrix and the fibre. I f  one con- 
siders a plastic matrix to have a Poisson ratio 
of  �89 and the fibre to have an elastic Poisson ratio 
of less than �89 the effective volume-fraction of 
fibre will be greater under load than at zero load. 
This will lead to the matrix carrying a smaller 
fraction of the applied load than assumed in this 
analysis and a concurrent increase in the number 
of  cycles to failure for the matrix. This effect, 
however, should be fairly small. A more per- 
tinent criticism would be the absence of a micro- 
mechanical approach to this problem. For 
example, the differing Poisson's ratio of the 
matrix and the fibre will create a non-uniaxial 
stress state [4] in both the fibre and the matrix, 
and an analysis based on these stresses may lead 
to different values of the cycles necessary for 
matrix failure. While these criticisms are all 
valid, the possibility still remains that cycling 
of a fibre composite between stresses in the 
elastic-plastic region will cause progressive 
work-hardening of the matrix which may result 
in its fracture. Such a mechanism will limit the 
use of fibre composites in applications where 
cyclic stresses are involved. 

5. Summary 
The Orowan model of  fatigue has been applied 
to fibre composites under loads corresponding 
to elastic-plastic deformation. I t  predicts that the 
fatigue properties of  fibre composites may be 
limited by the failure of the matrix caused by 

progressive work-hardening of the matrix. 
Specifically, the analysis predicts a composite 
stress-number of  cycles-to-matrix-failure rela- 
tionship, one characteristic of which is an 
"endurance limit". The latter is found, for high 
volume-fractions of the reinforcing fibres, to be 
only a small fraction of the composite tensile 
strength. Application of the equations devel- 
oped to Cu-W and Ag-steel fibre composites 
indicates a rather limited number of cycles to 
failure for stresses in excess of  the "endurance 
limit". 
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